

Signaux et Systèmes 1

Formulaire

Prof. Michael Unser

Novembre 2013

Definitions

Fonctions élementaires

Saut unité

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{sinon} \end{cases}$$

Monôme causal

$$t_+^n = u(t) \cdot t^n$$

Sinus cardinal

$$\operatorname{sinc}(t) = \frac{\sin \pi t}{\pi t}$$

Fonction rectangle

$$\mathrm{rect}(t) = \left\{ \begin{array}{ll} 1, & -\frac{1}{2} \leq t < +\frac{1}{2} \\ 0, & \mathrm{sinon} \end{array} \right.$$

Propriétés:

Fonction absolument intégrable

$$f \in L_1(\mathbb{R}) \quad \Leftrightarrow \quad \int_{\mathbb{R}} |f(t)| \mathrm{d}t < \infty$$

Fonction à énergie finie

$$f \in L_2(\mathbb{R}) \quad \Leftrightarrow \quad \int_{\mathbb{R}} |f(t)|^2 dt < \infty$$

Delta de Kronecker

$$\delta_n = \delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{sinon} \end{cases}$$

Définitions (suite)

$$j = \sqrt{-1}$$

Opérations

Convolution	$(h * f)(t) = \int_{\mathbb{R}} h(\tau) f(t - \tau) d\tau$
	. /ℝ

Renversement
$$h^{\vee}(t) = h(-t)$$

Transformation de Fourier

Intégrale de Fourier
$$X(\omega)=\mathcal{F}\{x\}(\omega)=\int_{\mathbb{R}}x(t)e^{-j\omega t}\mathrm{d}t$$

Partie rélle
$$R_X(\omega) = \operatorname{Re}\big(X(\omega)\big)$$

Partie imaginaire
$$I_X(\omega) = \operatorname{Im} \big(X(\omega) \big)$$

Amplitude
$$A_X(\omega) = |X(\omega)|$$

Phase
$$\Phi_X(\omega) = \arctan\left(\frac{I_X(\omega)}{R_X(\omega)}\right)$$

Unser / Signaux et Systèmes I

Convolution des signaux de base

$f_1(t)$	$f_2(t)$	$(f_1 * f_2) (t) = (f_2 * f_1) (t)$
f(t)	$\delta(t-T)$	f(t-T)
u(t)	u(t)	$u(t) \cdot t = t_+$
$u(t) \cdot e^{s_1 t}$	$u(t) \cdot e^{s_2 t}$	$\frac{u(t) \cdot e^{s_1 t} - u(t) \cdot e^{s_2 t}}{s_1 - s_2} s_1 \neq s_2$
$u(t) \cdot e^{st}$	$u(t) \cdot e^{st}$	t_+e^{st}
$\mathrm{rect}(t)$	$\mathrm{rect}(t)$	$\mathrm{tri}(t) = \left\{ egin{array}{ll} 1 - t , & t \in [-1,1] \ 0, & ext{sinon} \end{array} ight.$
$\mathrm{rect}(t/T)$	$\mathrm{rect}(t/T)$	$T\operatorname{tri}(t/T)$
$\frac{t_+^n}{n!} = u(t) \cdot \frac{t^n}{n!}$	$rac{t_+^m}{m!}$	$\frac{t_{+}^{m+n+1}}{(n+m+1)!}$
$\frac{t_+^n e^{st}}{n!}$	$\frac{t_+^m e^{st}}{m!}$	$\frac{t_{+}^{m+n+1}e^{st}}{(n+m+1)!}$
$\frac{t_+^n}{n!}$	$u(t) \cdot e^{st}$	$\frac{u(t)}{s^{n+1}} \left(e^{st} - \sum_{k=0}^{n} \frac{(st)^k}{k!} \right)$

Opérateurs de convolution

Opérateur	Notation	Réponse impulsionnelle	Réponse fréquentielle
Générique	T{ }	$h(t) = T \left\{ \delta \right\}(t)$	$H(\omega) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t} dt$
Identité	I{ }	$\delta(t)$	$J-\infty$ 1
Décalage	$S_{\tau}{f}(t) = f(t-\tau)$	$\delta(t- au)$	$e^{-j\omega\tau}$
Dérivée	$\mathrm{D}\{\ \} = \frac{\mathrm{d}}{\mathrm{d}t}$	$\delta'(t)$	$j\omega$
Dérivée d'ordre n	$D^n\{ \} = \frac{\mathrm{d}^n}{\mathrm{d}t^n}$	$\delta^{(n)}(t)$	$(j\omega)^n$
Intégrale	$D^{-1}\{\} = \int_{-\infty}^{t} dt$	u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
Intégrale multiple	$\mathrm{D}^{-n}\{\ \}$	$\frac{t_{+}^{n-1}}{(n-1)!}$	$\frac{j^{n-1}\pi\delta^{(n-1)}(\omega)}{(n-1)!} + \frac{1}{(j\omega)^n}$
Intégrale fractionnaire	$D^{-\alpha}\{\ \}$	$\frac{t_+^{\alpha-1}}{\Gamma(\alpha)}$	$rac{1}{(j\omega)^{lpha}}$ si $lpha$ non-entier
Système différentiel simple	$(D - sI)^{-1}\{ \}$	$u(t) \cdot e^{st}$	$\frac{1}{j\omega - s} \qquad \text{Re}(s) < 0$
Système différentiel itéré	$(D - sI)^{-n} \{ \}$	$\frac{t_{+}^{n-1}e^{st}}{(n-1)!}$	$\frac{1}{(j\omega - s)^n} \qquad \text{Re}(s) < 0$
Différence finie	$\Delta_+\{\ \}$	$\delta(t) - \delta(t-1)$	$1 - e^{-j\omega}$
Différences finies d'ordre n	$\Delta^n_+\{\ \}$	$\sum_{k=0}^{n} \binom{n}{k} (-1)^k \delta(t-k)$	$(1 - e^{-j\omega})^n$
Système récursif avec délai	$(I - z_0 S_\tau)^{-1} \{ \}$	$\sum_{k=0}^{+\infty} z_0^k \delta(t - k\tau)$	$\frac{1}{1 - z_0 e^{-j\omega\tau}} z_0 \le 1$

Unser / Signaux et Systèmes I

Signaux périodiques: séries et intégrales de Fourier

Relation	
Signal périodique	$x_T(t) = x_T(t + nT), \forall n \in \mathbb{Z}$
Génération par périodisation $(\text{générateur }x(t))$	$x_T(t) = \sum_{n \in \mathbb{Z}} x(t - nT) = x(t) * \sum_{n \in \mathbb{Z}} \delta(t - nT)$
Série de Fourier	$x_T(t) = \sum_{n \in \mathbb{Z}} c_n e^{jn\omega_0 t}, \omega_0 = \frac{2\pi}{T}$
Transformation de Fourier	$X_T(\omega) = 2\pi \sum_{n \in \mathbb{Z}} c_n \delta(\omega - n\omega_0)$
Coefficients de Fourier	$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jn\omega_0 t} dt$
Coefficients de Fourier (manière indirecte)	$c_n = \frac{1}{T}X(n\omega_0)$ avec $X(\omega) = \mathcal{F}\{x\}(\omega)$
Formule de Poisson	$\sum_{n \in \mathbb{Z}} \delta(t - nT) = \frac{1}{T} \sum_{m \in \mathbb{Z}} e^{jm\omega_0 t}, \omega_0 = \frac{2\pi}{T}$
Formule de Parseval	$\frac{1}{T} \int_{-T/2}^{T/2} x_T(t) ^2 dt = \sum_{n \in \mathbb{Z}} c_n ^2$

Transformation de Fourier: propriétés

Opération	f(t)	$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$
Combinaison linéaire	$\alpha_1 f_1(t) + \alpha_2 f_2(t)$	$\alpha_1 F_1(\omega) + \alpha_2 F_2(\omega)$
Dualité	F(t)	$2\pi \cdot f(-\omega)$
Signal réel	f(t) réel	$F^*(\omega) = F(-\omega)$ (symétrie hermitienne)
Renversement	f(-t)	$F(-\omega)$
Complexe conjugué	$f(t)^*$	$F(-\omega)^*$
Dilatation	f(t/a)	$ a F(a\omega)$
Translation	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
Modulation	$e^{j\omega_0 t}f(t)$	$F(\omega-\omega_0)$
Convolution	(h*f)(t)	$H(\omega)F(\omega)$
Multiplication	$f_1(t)f_2(t)$	$\frac{1}{2\pi}\left(F_1*F_2\right)(\omega)$
Différentiation	$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$(j\omega)^n F(\omega)$
Multiplication par un monôme	$t^n f(t)$	$j^n \frac{\mathrm{d}^n F(\omega)}{\mathrm{d}\omega^n}$
Intégration	$\int_{-\infty}^t f(\tau) \mathrm{d}\tau$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$

Unser / Signaux et Systèmes I

Transformation de Fourier: signaux usuels

(a) Signaux à énergie finie

f(t)	$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$
$u(t)e^{st}$	$\frac{1}{j\omega - s}$, $\operatorname{Re}(s) < 0$
$e^{-a t }$	$\frac{2a}{\omega^2 + a^2}, a > 0$
$\frac{t_+^n e^{st}}{n!}$	$\frac{1}{(j\omega - s)^{n+1}}, \operatorname{Re}(s) < 0$
$\mathrm{rect}ig(rac{t}{T}ig)$	$T \cdot \operatorname{sinc}\left(\frac{\omega T}{2\pi}\right)$
$\operatorname{sinc}\left(\frac{t}{T}\right) = \frac{\sin\left(\frac{\pi t}{T}\right)}{\left(\frac{\pi t}{T}\right)}$	$T \cdot \operatorname{rect}\left(\frac{\omega T}{2\pi}\right)$
$\frac{1}{\sigma\sqrt{2\pi}}e^{-t^2/2\sigma^2}$	$e^{-\sigma^2\omega^2/2}$

(b) Distributions tempérées

f(t)	$F(\omega) = \mathcal{F}\{f\}(\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
$\sum_{k\in\mathbb{Z}}\delta(t-kT)$	$\omega_0 \sum_{n \in \mathbb{Z}} \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T}$
sign(t)	$rac{2}{j\omega}$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi \left(\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right)$
$\sin(\omega_0 t)$	$j\pi \left(\delta(\omega+\omega_0)-\delta(\omega-\omega_0)\right)$

Transformation de Fourier généralisée:

$$F(\omega) = \mathcal{F}\{f\}(\omega)$$

$$\updownarrow$$

$$\forall \phi \in \mathcal{S}, \quad \frac{1}{2\pi} \langle F, \mathcal{F}\{\phi\} \rangle = \langle f, \phi \rangle$$

Transformation de Fourier: relations intégrales

n -	:	
	ıatı	on

Transformation directe	$\mathcal{F}{f}(\omega) = F(\omega) = \int_{\mathbb{R}} f(t)e^{-j\omega t}dt$
Transformation inverse	$\mathcal{F}^{-1}\{F\}(t) = \frac{1}{2\pi} \int_{\mathbb{R}} F(\omega) e^{j\omega t} d\omega \stackrel{\text{p.p.}}{=} f(t)$
Intégrale	$\int_{\mathbb{R}} f(t) \mathrm{d}t = F(0)$
Moments	$\int_{\mathbb{R}} t^n f(t) dt = j^n \left. \frac{d^n F(\omega)}{d\omega^n} \right _{\omega=0}$
Parseval	$\int_{\mathbb{R}} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{\mathbb{R}} X(\omega)Y^*(\omega)d\omega \Leftrightarrow \langle x, y \rangle = \frac{1}{2\pi} \langle X, Y \rangle$
Conservation d'énergie	$E = \int_{\mathbb{R}} f(t) ^2 dt = \frac{1}{2\pi} \int_{\mathbb{R}} F(\omega) ^2 d\omega$
Convolution: $(x*y)(t)$	$\int_{\mathbb{R}} x(\tau)y(t-\tau)d\tau \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad X(\omega)\cdot Y(\omega)$
Intercorrélation: $c_{xy}(t)$ (cas réel)	$\int_{\mathbb{R}} x(\tau)y(t+\tau)d\tau \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad X^*(\omega)\cdot Y(\omega)$